Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(12): e1006735, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253863

RESUMO

The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.


Assuntos
Hepacivirus/genética , Hepacivirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Hepacivirus/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Mutagênese , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Internalização do Vírus
2.
MAbs ; 8(1): 129-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26491897

RESUMO

Monitoring antigen-specific memory B cells and the antibodies they encode is important for understanding the specificity, breadth and duration of immune response to an infection or vaccination. The antibodies isolated could further help design vaccine antigens for raising relevant protective immune responses. However, developing assays to measure and isolate antigen-specific memory B cells is technically challenging due to the low frequencies of these cells that exist in the circulating blood. Here, we describe a flow cytometry method to identify and isolate dengue envelope-specific memory B cells using a labeled dengue envelope protein. We enumerated dengue-envelope specific memory B cells from a cohort of dengue seropositive donors using this direct flow cytometry assay. A more established and conventional assay, the cultured B ELISPOT, was used as a benchmark comparator. Furthermore, we were able to confirm the single-sorted memory B-cell specificity by culturing B cells and differentiating them into plasma cells using cell lines expressing CD40L. The culture supernatants were assayed for antigen binding and the ability of the antibodies to neutralize the cognate dengue virus. Moreover, we successfully isolated the heavy and light Ig sequences and expressed them as full-length recombinant antibodies to reproduce the activity seen in culture supernatants. Mapping of these antibodies revealed a novel epitope for dengue 2 virus serotype. In conclusion, we established a reproducible methodology to enumerate antigen-specific memory B cells and assay their encoded antibodies for functional characterization.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Dengue/imunologia , Memória Imunológica , Proteínas do Envelope Viral/imunologia , Linfócitos B/citologia , Técnicas de Cultura de Células , Feminino , Citometria de Fluxo , Humanos , Masculino
3.
Nat Biotechnol ; 33(1): 58-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437882

RESUMO

Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...